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"modulus" 

M. T O M O Z A W A ,  J. C O R D A R O ,  M. S I N G H  
Materials Engineering Department, Rensselaer Polytechnic Institute, Troy, NY, USA 

The low frequency dielectric characteristics of many materials are often difficult to 
obtain accurately because of the d.c. conductivity contribution, which is the major 
portion of the loss, and which has to be subtracted from the total dielectric loss. This 
is particularly true for small dielectric relaxation peaks which tend to be overwhelmed 
by the d.c. conduction loss. An equation was derived which enables one to calculate the 
dielectric characteristics at low frequency, for specimens with small dielectric relaxation 
peaks, without subtracting the d.c. conductivity, from the complex impedance plot and 
complex electric "modulus" plot. 

1. Introduction 
In many dielectrics, a d.c. conductivity-related 
dielectric relaxation is observed at low frequencies 
[1-6].  In ionic conductors such as glasses and 
/3-A1203, this conductivity-related dielectric relax- 
ation is often called the migration loss [2, 6, 7] ,  
since it is related to the ionic migration in these 
materials. An identical dielectric relaxation is 
observed in electronic conducting glasses [4, 8] 
also. In the evaluation of the low frequency 
dielectric relaxation of these materials, it is cus- 
tomary to subtract the d.c. conductivity contri- 
bution from the dielectric loss. Because of this 
subtraction procedure, it is often difficult to 
obtain an accurate value of the permittivity at 
low frequency. Partly because of this reason, 
alternate quantities such as admittance [9], 
impedance [5, 10], and electric "modulus" 
[5, 11] are used, without subtraction of the 
d.c. conductivity contribution to evaluate the 
low frequency dielectric characteristics. Since 
these quantities are related to the permittivity, 
it should be possible to obtain the permittivity 
from impedance and electric "modulus". It is 
the purpose of this paper to show a method to 
do this for specimens with small dielectric re- 
laxation. 

2. T h e o r y  
The complex impedance Z* is given by [5, 10] 

M* 
Z* - - Z ' - j Z "  (1) 

]~Co 

where M* is the complex electric "modulus"; 
co is the angular frequency; Co is the capacitance 
with vacuum and is given by the product of the 
vacuum permittivity eo and area A divided by the 
distance apart d of plates. 

eoA 
Co = (2) 

d 

Z '  and Z" are real and imaginary parts of complex 
impedance, respectively. 

The complex electric "modulus" M* is ex- 
pressed by [5, 11 ] 

1 
M* - - M' + ]M" (3) 

e* 

where e* is the complex relative permittivity. M' 
and M" are real and imaginary parts of complex 
electric "modulus", respectively. 

The complex relative permittivity is given by 

e* = e ' - - ] ( e " + ~ e o  o ) (4) 
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where o is the d.c. conductivity; e' and e" are the 
real and imaginary parts of the relative permitti- 
vity, respectively, after subtraction of the d.c. 
conductivity contribution. 

When the relative permittivities e', e" are 
plotted on a complex plane, they often are approx- 
imated by a part of a circle as is shown schemat- 
ically in Fig. 1 a [ 12]. The corresponding equation 
is given by 

Ae 
e ' - - j e "  - I + ( ] ~ T )  :-a t-e.o, O > a : >  l 

(5) 
where r is the relaxation time, a is a parameter 
indicating the broadness of the frequency depen- 
dency of the imaginary component (~ = 0 corres- 
ponds to Debye's equation), eoo is the relative 
permittivity at high frequency; Ae is the dielectric 
strength given by the difference between the 
static relative permittivity e s and the high fre- 
quency value e=. The maximum of the dielectric 
loss is observed at cot = 1. In many materials r is 
approximately given by [1,3, 5, 8] 

e 0 e ~  
r -- (6) 

(l 

Alternatively, the experimental data are often 
analysed [5, 10, 11] in terms of the complex 
impedance Z* or the complex electric "modulus". 
Similarly to the relative permittivity, when these 
complex quantities, Z' ,  Z" ,  M' ,  M"  are plotted 
on a complex plane, they also are approximated 
by a part of a circle as is shown schematically 
in Figs. lb and c. The corresponding equations 
are given by 

R 
Z* = Z ' - - I Z "  - 0 > a z > l  

1 + (]Wrz) 1-c'z' 
(7) 

l/coo 
M* = M'  +]111" = 1 -(jCOZm) 1+am' O>am > 1 

(8) 

where Vz, Tm are the relaxation times, az, ~rn are 
parameters indicating the broadness of the fre- 
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Figure 1 Schematic representation of (a) complex di- 
electric constant, (b) complex impedance and (c) complex 
electric "modulus"�9 

quency dependency of the imaginary components. 
R is the d.c. resistance. 

Equation 7 can be expanded as 

Z :~ R 

~" _ 7r 
�9 - -  -~ / COS ~--(~z ((. .~Tz) 1 - O~z 1 + sm 2 ~176 '~ 

(9) 

On the other hand, the substitution of Equations 
3, 4 and 5 into Equation 1 gives 

7/" 2 {[1 12,_1 
1 + + sm . . . .  

j ) t l u )  

EOEoo �9 7]" 2 77" 2 -I -I 
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When Ae/eoo is zero, Equation 10 becomes 

R 
Z* = (lOa) 

1 +j~(eoe,o/o) 

thus Z" has the maximum at 6Orz = 1, and rz = 
eoe./cr, which is identical with Equation 6. 
Therefore, for specimens with small &e/e=, Z" 
maximum is expected near corz = cot = 1. At 
Z"  maximum, i.e. at c o z = l ,  Equation 10 
becomes 

7r 
( ~ / c . )  cos -~  ~\~_, 

Z* = R { I +  2 Fj(l+(Ae/2e= )j 
(ll) 

Thus, in order to make Z* given by Equation 9 
approximate to that given by Equation 10, for 
small Ae/e. ,  az must be given by the following 
equation: 

,I , (Ae/2e. cos ~ a  + sin 

t a n ~ a z  = 1 + (2xe/2e=) 

(12) 

This is shown in Fig. 2 using (n/2)a as a parameter. 
The extent of approximation employed is 

shown in Fig. 3, where the impedance is plotted 
on a complex plane for Ae/e.o = 0 (solid line) and 
for ~e /e .  = 0.1, (rr/2)a = 40 ~ (broken line). Here, 
data points were calculated using Equation 10 and 
tan (zr/2)% was calculated using Equation 12. 

Similarly, equations for M* are 

m*= 

l/e.o 

, ,1+~ m --] COS ~O~m@OTm)l+ am 1 + sin ~-O~ml.OJT"m) 

(1:~) 
and 

1 ?r 2 

c:  12} -' 
( 71" 2 7]" 2 - 1  - 1  

- -  / ~ O e o e .  + ( & e / e . )  1 + sin + 

(14) 
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Figure 2 Relationship between tan (n/2)a z and Ae/% as it varies with the (n/2)~ parameter. 
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Figure 3 Complex impedance accor- 
ding to Equation 10 for Ae/e = 
0 (solid line) and for Ae/e = 
0.1, 0r/2)a = 40 ~ (broken line). 

Similarly to Z ' ,  for specimens with small Ae/e~, 
the M" maximum is expected near cozr~ = cot = 1. 

At M" maximum, i.e., at coz = 1, Equation 14 
becomes 

1 + ~,~ 2 _ . /  

Os) 
Thus, in order to make M* given by Equation 13 
approximate to that given by Equation 14, for 
small Ae/e~, am must be given by the following 
equation. 

7r Ae/2e= 

1 (Ae/2e,o) o s ~ a  l+sin~-c~ . 

(16) 
This is shown in Fig. 4 using (rr/2)~ as a parameter. 

The extent of  approximation employed is 
shown in Fig. 4, where the electric "modulus" is 
plotted on a complex plane, for Zxe/e~ = 0 (solid 
line) and for Ae/e~ = 0.1, Qr/2)c~ = 40 ~ (broken 
line). Here data points were calculated using 
Equation 14 and tan 0r/2)~m was calculated using 
Equation 16. 

Combining Equations 12 and 16, 
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Figure 4 Relationships between tan (~r/2)~ m and Ae/e as (zr/2)~ parameter. 
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Figure 6 An example of experimental data for l l20p.p .m.  Na20-GeO 2 glass at 375 ~ C. (Numbers in the figures are 
frequency in kHz.) (a) Complex impedance, (b) complex electric "modulus". 
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I 
8.0 Figure 7 Complex dielectric con- 

stant for ll20p.p.m. Na20-GeO 2 
glass at 375 ~ C, obtained by the 
present method. 

, +1) Ae 2 tan ~ a m  an ~a~ 

eo~ 11" 71 

1 -- tan ~-az" tan ~ a  m (17) 

Equation 17 shows that the small dielectric 
strength Ae/e*o can be evaluated from a m and 
az without the usual d.c. conductivity subtraction 
procedure. Once Ae/e~ is obtained, the parameter 
a can be determined either from Fig. 3 (or Equa- 
tion 12) or Fig. 5 (or Equation 16). Thus, the 
complete low frequency dielectric characteristics 
can be determined from the complex impedance 
plot and complex electric "modulus" plot. 

3. Application to the experimental data 
To demonstrate the use of  Equations 12, 16 and 
17, experimental data of high purity GeO2 glass 
with 1120 p.p.m. Na20 was used. Dissipation 
factor tan 6 and capacitance were determined 
as a function of frequency and temperature, 
using a GenRad capacitance bridge type 1615. 
Complex impedance and complex electric 
"modulus" were calculated and are shown in 
Figs. 6a and b respectively. Experimental data 
on tan (Tr/2)a z and tan (rr/2)am from Fig. 6 were 
used to calculate Ae/e*o from Equation 17. The 
value of 0.243 was obtained for Ae/e*o at 375 ~ C 
for this specimen. Using this value and tan (Tr/2)a~, 
(~r/2)a = 24 ~ (tan (n/2)a = 0.445) was obtained 
from Fig. 3, (or Equation 12). These results are 
shown in Fig. 7, using the value of e= = 6.116, 
obtained from the complex electric "modulus" 

plot (M! maximum corresponds to lie.o, cf. 
Fig. lc). 

4. Conclusion 
Equations 12, 16 and 17 were derived using 
assumptions rz ~-- rrn "~ r ~ eoe*o/a. The relation, 
~-~-e0eoo/a, has been found approximately true 
for a number of  materials [1,3, 5, 8] including 
conventional ionic conducting glasses, electronic 
conducting glasses and single as well as polycrystal- 
line ceramics. The relation z m = r z = e o e ~ / a  

holds for any material with a small value of 
Ae/e=. Therefore, the results in this paper are 
expected to be applicable to a variety of  materials 
with low concentrations of  charge carriers. Since 
the d.c. conductivity subtraction procedure which 
causes a large error can be circumvented, the low 
frequency dielectric relaxation characteristics such 
as the relative dielectric strength Ae/e= and the 
parameter describing the broadness of the dielec- 
tric loss peak a can be obtained with reasonable 
accuracy. 
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